On the Subject of Unordered Keys

No. This is not Ordered Keys.

See Appendix in Ordered Keys for identifying modules in Ordered Keys family.

This module consists of 6 coloured keys, each of which is labelled with a coloured number, and a black reset button.

The possible colours for both the keys and the numbers labelling them are: (R)ed, (G)reen, (B)lue, (C)yan, (M)agenta, and (Y)ellow.

Any of the numbers 1 - 6 may appear on each of the keys.

The information given by each key is used to locate a cell within a 6×6 subgrid of a 6×6 grid which will have a value in the range 1 - 6.

On this grid,

  • the row along the top refers to the colour of the key.
  • the row along the bottom refers to the label on the key.
  • the column along the left refers to the colour of the label.
  • the column along the right refers to the position of the key from left to right.

A key is valid if its corresponding value in the table is equal to the number of keys that have not been pressed.

If none of the remaining keys are valid, push the black button to reset the remaining keys.

The module is solved if-

  • all six keys have been pressed.
  • the module has been reset four times.
    (If no keys were valid after a reset, the next reset counts twice)

A strike will be issued if-

  • an invalid key is pressed.
  • the reset button is pressed when any remaining key is valid.
RGB CMY
R134625 453261 436251 512463 246531 3562141
451263 324156 514632 326154 431265 2413652
625314 612435 625314 631542 153642 1234563
263451 531642 352146 245316 612453 5641234
312546 246513 241563 453621 524316 4156325
546132 165324 163425 164235 365124 6325416
G425136 513642 261534 132456 356124 6135421
361542 652134 534126 623514 231645 3512642
213654 341256 643215 241365 413256 5246133
542361 234561 315642 564231 624513 1463254
156423 165423 126453 415623 145362 4321565
634215 426315 452361 356142 562431 2654316
B342156 125643 361254 234561 432651 2351461
516234 346152 146325 516342 516342 4126532
635412 614235 513462 342615 265134 3642153
463521 463521 254613 423156 143265 6534214
251643 532416 425136 651423 624513 1465325
124365 251364 632541 165234 351426 5213646
C245361 314526 523416 432156 645312 1435621
431652 625143 241365 643521 326145 5214362
154236 132654 356241 316245 451263 2643153
623415 451362 614532 561432 134526 3156244
316524 263415 465123 254613 562431 6521435
562143 546231 132654 125364 213654 4362516
M645123 654321 152634 634125 541623 5324611
136254 321564 236541 543261 136542 4261532
521346 162435 413265 126453 412365 1456323
364512 536142 364152 361542 325416 6132454
452631 245613 541326 452316 263154 2543165
213465 413256 625413 215634 654231 3615246
Y524136 236541 653421 341265 156234 4236511
312564 342156 362154 623154 241653 5143622
143625 425613 246513 254316 563142 6351243
256341 651234 415362 416523 324516 1625434
635412 513462 124635 165432 635421 3462155
461253 164325 531246 532641 412365 2514366
123456 123456 123456 123456 123456 123456